3-D Stacked Image Sensor With Deep Neural Network Computation
نویسندگان
چکیده
منابع مشابه
Learning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملDeep Convolutional Neural Network for Image Deconvolution
Many fundamental image-related problems involve deconvolution operators. Real blur degradation seldom complies with an ideal linear convolution model due to camera noise, saturation, image compression, to name a few. Instead of perfectly modeling outliers, which is rather challenging from a generative model perspective, we develop a deep convolutional neural network to capture the characteristi...
متن کاملImage Retrieval Method for Deep Neural Network
Because of the large data in the image database, the key problem of the retrieval algorithm is to retrieve the required image in the short time. Aiming at this problem, this article given a self-learning deep belief neural network method, and through building layers, input, output, and self-learning algorithm in network architecture to get global algorithm for image retrieval. The accuracy and ...
متن کاملDocument Image Classification with Intra-Domain Transfer Learning and Stacked Generalization of Deep Convolutional Neural Networks
In this work, a region-based Deep Convolutional Neural Network framework is proposed for document structure learning. The contribution of this work involves efficient training of region based classifiers and effective ensembling for document image classification. A primary level of ‘inter-domain’ transfer learning is used by exporting weights from a pre-trained VGG16 architecture on the ImageNe...
متن کاملDeep Stacked Networks with Residual Polishing for Image Inpainting
Deep neural networks have shown promising results in image inpainting even if the missing area is relatively large. However, most of the existing inpainting networks introduce undesired artifacts and noise to the repaired regions. To solve this problem, we present a novel framework which consists of two stacked convolutional neural networks that inpaint the image and remove the artifacts, respe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Sensors Journal
سال: 2018
ISSN: 1530-437X,1558-1748,2379-9153
DOI: 10.1109/jsen.2018.2817632